15 research outputs found

    Segmentation uncertainty estimation as a sanity check for image biomarker studies

    Get PDF
    SIMPLE SUMMARY: Radiomics is referred to as quantitative image biomarker analysis. Due to the uncertainty in image acquisition, processing, and segmentation (delineation) protocols, the radiomic biomarkers lack reproducibility. In this manuscript, we show how this protocol-induced uncertainty can drastically reduce prognostic model performance and propose some insights on how to use it for developing better prognostic models. ABSTRACT: Problem. Image biomarker analysis, also known as radiomics, is a tool for tissue characterization and treatment prognosis that relies on routinely acquired clinical images and delineations. Due to the uncertainty in image acquisition, processing, and segmentation (delineation) protocols, radiomics often lack reproducibility. Radiomics harmonization techniques have been proposed as a solution to reduce these sources of uncertainty and/or their influence on the prognostic model performance. A relevant question is how to estimate the protocol-induced uncertainty of a specific image biomarker, what the effect is on the model performance, and how to optimize the model given the uncertainty. Methods. Two non-small cell lung cancer (NSCLC) cohorts, composed of 421 and 240 patients, respectively, were used for training and testing. Per patient, a Monte Carlo algorithm was used to generate three hundred synthetic contours with a surface dice tolerance measure of less than 1.18 mm with respect to the original GTV. These contours were subsequently used to derive 104 radiomic features, which were ranked on their relative sensitivity to contour perturbation, expressed in the parameter η. The top four (low η) and the bottom four (high η) features were selected for two models based on the Cox proportional hazards model. To investigate the influence of segmentation uncertainty on the prognostic model, we trained and tested the setup in 5000 augmented realizations (using a Monte Carlo sampling method); the log-rank test was used to assess the stratification performance and stability of segmentation uncertainty. Results. Although both low and high η setup showed significant testing set log-rank p-values (p = 0.01) in the original GTV delineations (without segmentation uncertainty introduced), in the model with high uncertainty, to effect ratio, only around 30% of the augmented realizations resulted in model performance with p < 0.05 in the test set. In contrast, the low η setup performed with a log-rank p < 0.05 in 90% of the augmented realizations. Moreover, the high η setup classification was uncertain in its predictions for 50% of the subjects in the testing set (for 80% agreement rate), whereas the low η setup was uncertain only in 10% of the cases. Discussion. Estimating image biomarker model performance based only on the original GTV segmentation, without considering segmentation, uncertainty may be deceiving. The model might result in a significant stratification performance, but can be unstable for delineation variations, which are inherent to manual segmentation. Simulating segmentation uncertainty using the method described allows for more stable image biomarker estimation, selection, and model development. The segmentation uncertainty estimation method described here is universal and can be extended to estimate other protocol uncertainties (such as image acquisition and pre-processing)

    Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients : evaluation of the added prognostic value for overall survival and locoregional recurrence

    Get PDF
    Background and purpose: The prognostic value of radiomics for non-small cell lung cancer (NSCLC) patients has been investigated for images acquired prior to treatment, but no prognostic model has been developed that includes the change of radiomic features during treatment. Therefore, the aim of this study was to investigate the potential added prognostic value of a longitudinal radiomics approach using cone-beam computed tomography (CBCT) for NSCLC patients. Materials and methods: This retrospective study includes a training dataset of 141 stage I-IV NSCLC patients and three external validation datasets of 94, 61 and 41 patients, all treated with curative intended (chemo) radiotherapy. The change of radiomic features extracted from CBCT images was summarized as the slope of a linear regression. The CBCT slope-features and CT-extracted features were used as input for a Cox proportional hazards model. Moreover, prognostic performance of clinical parameters was investigated for overall survival and locoregional recurrence. Model performances were assessed using the Kaplan-Meier curves and c-index. Results: The radiomics model contained only CT-derived features and reached a c-index of 0.63 for overall survival and could be validated on the first validation dataset. No model for locoregional recurrence could be developed that validated on the validation datasets. The clinical parameters model could not be validated for either overall survival or locoregional recurrence. Conclusion: In this study we could not confirm our hypothesis that longitudinal CBCT-extracted radiomic features contribute to improved prognostic information. Moreover, performance of baseline radiomic features or clinical parameters was poor, probably affected by heterogeneity within and between datasets

    Distributed learning on 20 000+ lung cancer patients - The Personal Health Train

    Get PDF
    Background and purpose Access to healthcare data is indispensable for scientific progress and innovation. Sharing healthcare data is time-consuming and notoriously difficult due to privacy and regulatory concerns. The Personal Health Train (PHT) provides a privacy-by-design infrastructure connecting FAIR (Findable, Accessible, Interoperable, Reusable) data sources and allows distributed data analysis and machine learning. Patient data never leaves a healthcare institute. Materials and methods Lung cancer patient-specific databases (tumor staging and post-treatment survival information) of oncology departments were translated according to a FAIR data model and stored locally in a graph database. Software was installed locally to enable deployment of distributed machine learning algorithms via a central server. Algorithms (MATLAB, code and documentation publicly available) are patient privacy-preserving as only summary statistics and regression coefficients are exchanged with the central server. A logistic regression model to predict post-treatment two-year survival was trained and evaluated by receiver operating characteristic curves (ROC), root mean square prediction error (RMSE) and calibration plots. Results In 4 months, we connected databases with 23 203 patient cases across 8 healthcare institutes in 5 countries (Amsterdam, Cardiff, Maastricht, Manchester, Nijmegen, Rome, Rotterdam, Shanghai) using the PHT. Summary statistics were computed across databases. A distributed logistic regression model predicting post-treatment two-year survival was trained on 14 810 patients treated between 1978 and 2011 and validated on 8 393 patients treated between 2012 and 2015. Conclusion The PHT infrastructure demonstrably overcomes patient privacy barriers to healthcare data sharing and enables fast data analyses across multiple institutes from different countries with different regulatory regimens. This infrastructure promotes global evidence-based medicine while prioritizing patient privacy

    Automated detection and segmentation of non-small cell lung cancer computed tomography images.

    Full text link
    peer reviewedDetection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours

    Multicenter comparison of measures for quantitative evaluation of contouring in radiotherapy

    No full text
    Background and Purpose: A wide range of quantitative measures are available to facilitate clinical implementation of auto-contouring software, on-going Quality Assurance (QA) and interobserver contouring variation studies. This study aimed to assess the variation in output when applying different implementations of the measures to the same data in order to investigate how consistently such measures are defined and implemented in radiation oncology. Materials and Methods: A survey was conducted to assess if there were any differences in definitions of contouring measures or their implementations that would lead to variation in reported results between institutions. This took two forms: a set of computed tomography (CT) image data with “Test” and “Reference” contours was distributed for participants to process using their preferred tools and report results, and a questionnaire regarding the definition of measures and their implementation was completed by the participants. Results: Thirteen participants completed the survey and submitted results, with one commercial and twelve in-house solutions represented. Excluding outliers, variations of up to 50% in Dice Similarity Coefficient (DSC), 50% in 3D Hausdorff Distance (HD), and 200% in Average Distance (AD) were observed between the participant submitted results. Collaborative investigation with participants revealed a large number of bugs in implementation, confounding the understanding of intentional implementation choices. Conclusion: Care must be taken when comparing quantitative results between different studies. There is a need for a dataset with clearly defined measures and ground truth for validation of such tools prior to their use

    A systematic review and quality of reporting checklist for repeatability and reproducibility of radiomic features

    Get PDF
    PURPOSE: Although quantitative image biomarkers (radiomics) show promising value for cancer diagnosis, prognosis, and treatment assessment, these biomarkers still lack reproducibility. In this systematic review, we aimed to assess the progress in radiomics reproducibility and repeatability in the recent years. METHODS AND MATERIALS: Four hundred fifty-one abstracts were retrieved according to the original PubMed search pattern with the publication dates ranging from 2017/05/01 to 2020/12/01. Each abstract including the keywords was independently screened by four observers. Forty-two full-text articles were selected for further analysis. Patient population data, radiomic feature classes, feature extraction software, image preprocessing, and reproducibility results were extracted from each article. To support the community with a standardized reporting strategy, we propose a specific reporting checklist to evaluate the feasibility to reproduce each study. RESULTS: Many studies continue to under-report essential reproducibility information: all but one clinical and all but two phantom studies missed to report at least one important item reporting image acquisition. The studies included in this review indicate that all radiomic features are sensitive to image acquisition, reconstruction, tumor segmentation, and interpolation. However, the amount of sensitivity is feature dependent, for instance, textural features were, in general, less robust than statistical features. CONCLUSIONS: Radiomics repeatability, reproducibility, and reporting quality can substantially be improved regarding feature extraction software and settings, image preprocessing and acquisition, cutoff values for stable feature selection. Our proposed radiomics reporting checklist can serve to simplify and improve the reporting and, eventually, guarantee the possibility to fully replicate and validate radiomic studies

    Excitations and excitons in bacterial light-harvesting complexes.

    Get PDF
    AbstractThe arrangement of pigments as recently observed in the structure of the peripheral light-harvesting complex of Rhodopseudomonas acidophila provides a new impulse to the discussion about the nature of the excitation transport and exciton delocalization in these photosynthetic light-harvesting systems. A crucial parameter in this discussion is the strength of the coupling between neighbouring BChl molecules. Their proximity implies that exciton interaction is important in such a structure, and this tends to delocalize the excitation. However, at the same time these structures exhibit strong spectral inhomogeneity, due to which the excitation becomes localized. In this paper we discuss some views on the organization, interactions and energy transfer dynamics in light-harvesting complexes of photosynthetic purple bacteria
    corecore